First numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

First ordinals

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

An ordinal number is a number that shows place or position in a series.

The Boat Race

I

2nd

5th

3rd

8th

© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Ordinals Hundreds Chart

1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
11th	12th	13th	14th	15th	16th	17th	18th	19th	20th
21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
31st	32nd	33rd	34th	35th	36th	37th	38th	39th	40th
41st	42nd	43rd	44th	45th	46th	47th	48th	49th	50th
51st	52nd	53rd	54th	55th	56th	57th	58th	59th	60th
61st	62nd	63rd	64th	65th	66th	67th	68th	69th	70th
71st	72nd	73rd	74th	75th	76th	77th	78th	79th	80th
81st	82nd	83rd	84th	85th	86th	87th	88th	89th	90th
91st	92nd	93rd	94th	95th	96th	97th	98th	99th	100th

Numbers 1-10

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Numbers 1-10

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
tren
© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Numbers 11-20

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

12 twelve

15 fifteen
sixteen

seventeen

18 eighteen

19
 nineteen

20 twenty

© Jenny Eather. All rights reserved.

Hundreds Chart

Count across for ones and down for tens.

Two Hundred Chart

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150
151	152	153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168	169	170
171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190
191	192	193	194	195	196	197	198	199	200

Number Lines

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A number line is a line on which real numbers are marked at regular intervals.

$\begin{array}{llllllllllllllllllll}-10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 10\end{array}$
Number lines are usually labelled with integers.
Number lines are useful to show simple number operations.

Most numbers used in mathematics, science and everyday life are called real numbers.
Integers are the positive and negative numbers and zero, excluding fractions.
© Jenny Eather. All rights reserved.

Skip Counting by 2s

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

- Using even numbers.

$2,4,6,8,10,12,14,16,18,20$

- Using odd numbers.

$1,3,5,7,9,11,13,15,17,19,21$

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Counting by 2s to 100
© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Skip Counting by 5s

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

- Using every 5th number.

$5,10,15,20,25,30,35,40,45,50$

Counting by 5s to 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

© Jenny Eather. All rights reserved.

Skip Counting by 10s

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

- Using every 10th number.

$10,20,30,40,50,60,70,80,90,100$

Counting by 10 s to 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Start from any number at the top and count down the rows.

Odd and even numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

even numbers

- numbers that are divisible by 2.
- even numbers end with 2, 4, 6, 8 or 0.

$2,4,6,8,10,12,14,16,18,20$

odd numbers

- numbers that are not divisible by 2.
- odd numbers end with $1,3,5,7$ or 9 .

$1,3,5,7,9,11,13,15,17,19,21$

odd

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

even

Prime and composite numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

prime number

- a positive integer that has exactly two factors
- can only be divided evenly by 1 or itself.

composite number

- a positive integer with more than two factors.

(12) | $12=1 \times 12$ | $12=2 \times 6$ | $12=3 \times 4$ |
| :--- | :--- | :--- |
| $12 \div 1=12$ | $12 \div 2=6$ | $12 \div 3=4$ |

Blue - prime
numbers to 100.

Green - composite numbers to 100.
$12=2 \times 2 \times 3$ (60)

Every composite number has its own unique set of prime factors.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- 1 is neither prime nor composite
- 2 is the only even prime number

Negative and positive numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Negative numbers
are numbers
less than zero.

Positive numbers

are numbers
greater than zero.

Example: Celsius thermometers

On the Celsius scale, 0° is the freezing point of water and 100° is the boiling point.
© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Square numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Square numbers are numbers which can be represented in the shape of a square. A square number results from multiplying an integer by itself and may also be called a perfect square.

A number to be squared is indicated by a small 2 placed to its upper-right. This number is called an exponent, index, power or order and shows how many copies of the base number to multiply together.

Triangular numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Triangular numbers are numbers that can be represented in the shape of a triangle. EXAMPLES: 3, 6, 10, 15 and 21

Triangular numbers sequence rule:

$$
\mathrm{x}_{\mathrm{n}}=\mathrm{n}(\mathrm{n}+1) / 2
$$

For example, the 10th triangular number is:

$$
x_{10}=10(10+1) / 2=55
$$

© Jenny Eather. All rights reserved.

Roman Numerals

The Roman numeral system was invented by the ancient Romans and uses letters of the alphabet to represent numerical values.

Thousands	Hundreds			Tens	Units	
M one thousand	C	one hundred	X	ten	II	one
MM two thousand	CC	two hundred	XX	twenty	III	two
MMM three thousand	CCC	three hundred	XXX	thirty	IIII	three
	CD	four hundred	XL	forty	IV	four
	D	five hundred	L	fifty	V	five
	DC	six hundred	LX	sixty	VI	six
	DCC	seven hundred	LXX	seventy	VIII	seven
		DCCC	eight hundred	LXXX	eighty	VIIII
	eight					
	CM	nine hundred	XC	ninety	IX	nine

EXAMPLES:

1	I
5	V
10	X
50	L
100	C
500	D
1000	M

Roman numerals are often used on the faces of watches and clocks, to show the year a movie was released and in the names of popes and monarchs, e.g. Elizabeth II.

Number Sequences

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

A number sequence is an ordered set of numbers arranged according to a rule.

Examples:

Arithmetic sequences

- same number added each time
Geometric sequences
- multiplied by same
number each time
Odd numbers
$5,10,15,20,25,30,35,40,45,50, \ldots$
$2,4,8,16,32,64,128,256,512, \ldots$
$1,3,5,7,9,11,13,15,17,19,21, \ldots$

Even numbers
$2,4,6,8,10,12,14,16,18,20, \ldots$

Prime numbers
$2,3,5,7,11,13,17,19,23,29,31 \ldots$

Composite numbers $\quad 4,6,8,9,10,12,14,15,16,18,20 \ldots$

Square numbers

Triangular numbers

Fibonacci numbers

$1,1,2,3,5,8,13,21,34,55,89, \ldots$
The Fibonacci number sequence is named after the Italian mathematician Leonardo Fibonacci (1175-1250). Each number is the sum of the two numbers before it.

Types of Numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Numbers describe quantities or values.
There are many types of numbers.
Numerals are symbols used to represent numbers.

Types of numbers and numerals include:

Hindu Arabic Numerals - used in the decimal system.

Roman Numerals

Ordinal Numbers
Most numbers used in mathematics, science and everyday life are called real numbers.
Real numbers may be classified as:

Natural Numbers

Whole Numbers

Integers

Counting numbers from one to infinity.

Counting numbers from zero to infinity.

Positive and negative numbers (excluding fractions) and zero.
Integers, fractions, terminating and repeating decimals.

Non-terminating and non-repeating decimals.
$1,2,3, \ldots$
$0,1,2,3, \ldots$

$$
\ldots-3,-2,-1,0,1,2,3, \ldots
$$

$\ldots-3,-2,-1,0,1,2,3, \ldots$
$\frac{1}{2} 0.5 \quad \frac{1}{3} 0.3333333 \ldots$
3.14159265359... $\pi, \sqrt{2}, \sqrt{3}$

Place Value

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Place value is the value of a digit depending on its place in a number.

Units and ones mean the same thing.

Thousands	Hundreds	Tens	Ones
			3
			3

three

Thousands	Hundreds	Tens	Ones
		8	3
		8	3

eighty-three

Thousands	Hundreds	Tens	Ones
	5	8	3
	5	8	3

five hundred and eighty-three

Thousands	Hundreds	Tens	Ones
7	5	8	3

seven thousand, five hundred and eighty-three

Reading large numbers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Inside each large group we read the numbers as hundreds, tens and ones.

Ones can also be called units.

Millions			Thousands			Ones		
H	T	O	H	T	O	H	T	O
				5	3	2	7	9
6	8	2	4	3	5	7	1	2

EXAMPLES:

Fifty-three thousand, two hundred and seventy-nine.

Nine hundred and twenty-five thousand, six hundred and thirty-one.

Six hundred and eighty-two million, four hundred and thirty-five thousand, seven hundred and twelve.

Quadrillions	Trillions	Billions	Millions	Thousands	Ones
H T O	H T O	H T O	H T 0	H T O	H T O
123	123	123	123	123	123

Try reading this one!!
NOTE: US convention - leave out the word 'and'.
© Jenny Eather. All rights reserved.
Educational reference material for non-commercial use only.

Expanding numbers 1

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Expanded notation is a way of writing numbers to show place value.

Ones can also be called units.

Millions			Thousands			Ones		
H	T	O	H	T	O	H	T	O
				5	3	2	7	9
			9	2	5	6	3	1
	8	2	4	3	5	7	1	2

Examples
Two methods of writing expanded notation are shown for each number below.
$5 \times 10,000+3 \times 1,000+2 \times 100+7 \times 10+9$
OR $50000+3000+200+70+9$
$9 \times 100,000+2 \times 10,000+5 \times 1,000+6 \times 100+3 \times 10+1$
OR $900000+20000+5000+600+30+1$
$6 \times 100,000,000+8 \times 10,000,000+2 \times 1,000,000$
$+4 \times 100,000+3 \times 10,000+5 \times 1,000+7 \times 100+1 \times 10+2$
OR $600000000+80000000+2000000$
$+400000+30000+5000+700+10+2$
NOTE:
The use of commas, spaces or points in large numbers varies between countries. In four digit numbers, they are often optional.

Commas and spaces are included above.

Expanding numbers 2

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Expanded notation is a way of writing numbers to show place value.

0 1	$\begin{aligned} & 9 \\ & \frac{8}{8} \\ & \frac{\$}{0} \\ & \frac{5}{5} \\ & \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{2}}$	$\stackrel{\&}{8}$		$\begin{aligned} & \text { e } \\ & \frac{1}{t} \\ & \hline-1 \end{aligned}$		0 2	syłpuesnoył-uel
$\begin{aligned} & 8 \\ & \hline 8 \\ & \hline \\ & \times \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \times \end{aligned}$	$\stackrel{\text { 으﹎ }}{\times}$	$\stackrel{\Gamma}{x}$	-	$-\frac{10}{}+$			

Examples

Two methods of writing expanded notation are shown for each number below.

$$
\begin{aligned}
& 64=(6 \times 10)+(4 \times 1) \\
& 64=60+4 \\
& 964=(9 \times 100)+(6 \times 10)+(4 \times 1) \\
& 964=900+60+4
\end{aligned}
$$

$$
4.32=(4 \times 1)+\left(3 \times \frac{1}{10}\right)+\left(2 \times \frac{1}{100}\right)
$$

$$
4.32=4+0.3+0.02
$$

$34.05=(3 \times 10)+(4 \times 1)+\left(5 \times \frac{1}{100}\right)$ $34.05=30+4+0.05$
$0.375=\left(3 \times \frac{1}{10}\right)+\left(7 \times \frac{1}{100}\right)+\left(5 \times \frac{1}{1000}\right)$
$0.375=0.3+0.07+0.005$
$967.123=(9 \times 100)+(6 \times 10)+(7 \times 1)+\left(1 \times \frac{1}{10}\right)+\left(2 \times \frac{1}{100}\right)+\left(3 \times \frac{1}{1000}\right)$ $967.123=900+60+7+0.1+0.02+0.003$
\bigcirc Jenny Eather. All rights reserved.

Rounding Hundreds Chart

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Round down

0	1	2	3	4	5	6	7	8	9	10
10	11	12	13	14	15	16	17	18	19	20
20	21	22	23	24	25	26	27	28	29	30
30	31	32	33	34	35	36	37	38	39	40
40	41	42	43	44	45	46	47	48	49	50
50	51	52	53	54	55	56	57	58	59	60
60	61	62	63	64	65	66	67	68	69	70
70	71	72	73	74	75	76	77	78	79	80
80	81	82	83	84	85	86	87	88	89	90
90	91	92	93	94	95	96	97	98	99	10

Rounding numbers 1

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Numbers are rounded to change them to a more convenient value.

Rounding makes it easier to estimate quickly.

Look at the last digit of the number.

If it is:

to
10

- 5 or more, round up to the next higher multiple of 10. - less than 5, round down to the next lower multiple of 10.

Look at the last two digits of the number.

If they are:

- 50 or more, round up to the next higher multiple of 100. - less than 50, round down to the next lower multiple of 100.

Look at the last three digits of the number.

If they are:

- 500 or more, round up to the next higher multiple of 1000. - less than 500, round down to

EXAMPLES:

57865790
5423 - 5420

Rounding numbers 2

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

Numbers are rounded to change them to a more convenient value.
whole numbers decimal fractions

			$\stackrel{y}{5}$					
6	9	4	5	-	3	7	2	8

The number of decimal places is the number of digits to the right of a decimal point.

A rounding instruction tells how many digits to keep.

1. Look at the digit in the place value to be rounded to.
2. Increase it by 1 if the digit to the right of it is $\mathbf{5}$ or more.
3. Leave it the same if the digit to the right of it is less than 5.
4. Remove everything to the right of the digit. Round to the nearest ...

3 decimal places (thousandth)	$\mathbf{6 9 4 5 . 3 7 2 8}$	$\mathbf{6 9 4 5 . 3 7 3}$
2 decimal places (hundredth)	6945.3728	$\mathbf{6 9 4 5 . 3 7}$
decimal place (tenth)	$\mathbf{6 9 4 5 . 3 7 2 8}$	$\mathbf{6 9 4 5 . 4}$
whole number	$\mathbf{6 9 4 5 . 3 7 2 8}$	$\mathbf{6 9 4 5}$

When rounding to 10 or above there's an important change to step 4.
4. Replace whole numbers to the right of the digit with zero(s), then remove everything to their right. Round to the nearest ...
ten
hundred
thousand

$$
\begin{array}{ll}
6945.3728 & 6950 \\
6945.3728 & 6900 \\
6945.3728 & 7000
\end{array}
$$

Rounding examples

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com

1 decimal place

 35276.5

2 decimal places

35276.54

3 decimal places $\geqslant 35276.538$
4 decimal places

35276.5385

The number of decimal places is the number of digits to the right of a decimal point.

Integers

From: A Maths Dictionary for Kids by Jenny Eather at www.amathsdictionaryforkids.com
Integers are positive numbers, negative numbers and zero ... but not fractions or decimal fractions.

Operations on integers

Addition

Positive + Positive = Positive
Negative + Negative = Negative

* Positive + Negative or Negative + Positive
- subtract the smaller number from the larger number,
- then use the sign of the larger number in the answer
$5+3=8$
$(-5)+(-3)=-8$
$(-5)+3=-2$
$3+(-5)=-2$
$(-3)+5=2$
$5+(-3)=2$

Subtraction

Negative - Positive = Negative
Positive - Negative = Positive

* Negative - Negative = Negative $\boldsymbol{+}$ Positive
- treat as Negative + Positive
- subtract the smaller number from the larger number,
- then use the sign of the larger number in the answer
$(-5)-3=(-5)+(-3)=-8$
$5-(-3)=5+3=8$
$(-5)-(-3)=(-5)+3=-2$
$(-3)-(-5)=(-3)+5=2$

Multiplication

Positive \times Positive = Positive
Negative x Negative = Positive
Negative x Positive = Negative
Positive x Negative = Negative

- change double negatives to a positive
$5 \times 3=15$
$(-3) \times(-5)=15$
$(-3) \times 5=-15$
$3 \times(-5)=-15$

Division

Positive \div Positive $=$ Positive
Negative \div Negative $=$ Positive
Negative \div Positive $=$ Negative
Positive \div Negative $=$ Negative
$15 \div 3=5$
$(-15) \div(-3)=5$
$(-15) \div 3=-5$
$15 \div(-3)=-5$

